Dopamine supports reward prediction to shape reward-pursuit strategy.
Reward predictions not only promote reward pursuit, they also shape how reward is pursed. Such predictions are supported by environmental cues that signal reward availability and probability. Such cues trigger dopamine release in the nucleus accumbens core (NAc). Thus, here we used dopamine sensor fiber photometry, cell-type and pathway-specific optogenetic inhibition, Pavlovian cue-reward conditioning, and test of cue-induced reward-pursuit strategy in male and female rats, to ask whether cue-evoked phasic dopamine release is shaped by reward prediction to support reward pursuit. We found that cue-evoked NAc core dopamine is positively shaped by reward prediction and inversely relates to and predicts instrumental reward seeking. Cues that predicted imminent reward with high probability triggered a large NAc dopamine response and this was associated checking for the expected reward in the delivery location, rather than instrumental reward seeking. Cues that predicted reward with low probability elicited less dopamine and this was associated with a bias towards seeking, rather than check for reward. Correspondingly, inhibition of cue-evoked NAc dopamine increased instrumental reward-seeking and decreased reward-checking behavior. Thus, transient, cue-evoked NAc core dopamine release supports reward prediction to shape reward-pursuit strategy. Cues that signal reward availability promote reward pursuit. To ensure this is adaptive, we use the predictions these cues enable to select how to pursue reward. When reward prediction is low, we'll seek out new reward opportunities. When it is high, we'll check for the reward it in its usual location. Here we discovered that cue-evoked nucleus accumbens dopamine supports reward predictions to shape how reward is pursued. The data show that dopamine can actually constrain reward seeking and promote reward checking when reward is predicted strongly and imminently. These results provide new information on how dopamine shapes behavior in the moment and help understand the link between motivational and dopamine disruptions in psychiatric conditions such as addictions and depression.
Computational modelling identifies key determinants of subregion-specific dopamine dynamics in the striatum.
Striatal dopamine (DA) release regulates reward-related learning and motivation and is believed to consist of a short-lived and continuous component. Here, we build a large-scale three-dimensional model of extracellular DA dynamics in dorsal (DS) and ventral striatum (VS). The model predicts rapid dynamics in DS with little to no basal DA and slower dynamics in the VS enabling build-up of DA levels. These regional differences do not reflect release-related phenomena but rather differential dopamine transporter (DAT) activity. Interestingly, our simulations posit DAT nanoclustering as a possible regulator of this activity. Receptor binding simulations show that D1 receptor occupancy follows extracellular DA concentration with milliseconds delay, while D2 receptors do not respond to brief pauses in firing but rather integrate DA signal over seconds. Summarised, our model distills recent experimental observations into a computational framework that challenges prevailing paradigms of striatal DA signalling.
Psychedelic 5-HT2A agonist increases spontaneous and evoked 5-Hz oscillations in visual and retrosplenial cortex.
Visual perception appears largely stable in time. However, psychophysical studies have revealed that low frequency (0.5 - 7 Hz) oscillatory dynamics can modulate perception and have been linked to various cognitive states and functions. Neither the contribution of waves around 5 Hz (theta or alpha-like) to cortical activity nor their impact during aberrant brain states have been resolved at high spatiotemporal scales. Here, using cortex-wide population voltage imaging in awake mice, we found that bouts of 5-Hz oscillations in the visual cortex are accompanied by similar oscillations in the retrosplenial cortex, occurring both spontaneously and evoked by visual stimulation. Injection of psychotropic 5-HT2AR agonist induced a significant increase in spontaneous 5-Hz oscillations, and also increased the power, occurrence probability and temporal persistence of visually evoked 5-Hz oscillations. This modulation of 5-Hz oscillations in both cortical areas indicates a strengthening of top-down control of perception, supporting an underlying mechanism of perceptual filling and visual hallucinations.
Latest Updated Curations
Basal Ganglia Advances
Basal Ganglia Advances is a collection highlighting research on the structure, function, and disorders of the basal ganglia. It features studies spanning neuroscience, clinical insights, and computational models, serving as a hub for advances in movement, cognition, and behavior.
Progress in Voltage Imaging
Recent advances in the field of Voltage Imaging, with a special focus on new constructs and novel implementations.
Navigation & Localization
Work related to place tuning, spatial navigation, orientation and direction. Mainly includes articles on connectivity in the hippocampus, retrosplenial cortex, and related areas.
Most Popular Recent Articles
Computational modelling identifies key determinants of subregion-specific dopamine dynamics in the striatum.
Striatal dopamine (DA) release regulates reward-related learning and motivation and is believed to consist of a short-lived and continuous component. Here, we build a large-scale three-dimensional model of extracellular DA dynamics in dorsal (DS) and ventral striatum (VS). The model predicts rapid dynamics in DS with little to no basal DA and slower dynamics in the VS enabling build-up of DA levels. These regional differences do not reflect release-related phenomena but rather differential dopamine transporter (DAT) activity. Interestingly, our simulations posit DAT nanoclustering as a possible regulator of this activity. Receptor binding simulations show that D1 receptor occupancy follows extracellular DA concentration with milliseconds delay, while D2 receptors do not respond to brief pauses in firing but rather integrate DA signal over seconds. Summarised, our model distills recent experimental observations into a computational framework that challenges prevailing paradigms of striatal DA signalling.
Striatal cholinergic interneurons exhibit compartment-specific anatomical and functional organization in the mouse.
Striatal output is dynamically modulated by cholinergic interneurons (CINs), the primary source of acetylcholine in the striatum. CINs have been classically viewed as a random and homogeneous population, but recent evidence suggests heterogeneity in their anatomical and functional organization. Here, using systematic mapping and quantitative spatial analyses, we found that-contrary to current dogma-CINs exhibited striking enrichment and nonrandom clustering in the striosome compartment, particularly in the lateral striatum. Similar analyses carried out for parvalbumin- and somatostatin-expressing interneurons revealed that compartmental organization is interneuron specific. The strong "striosome preference" exhibited by CINs was confined within striosome borders, not extending to the surrounding matrix. We further found that striosome and matrix CINs differed in their expression levels of phospho-S6 ribosomal protein-Ser240/244 and choline acetyltransferase, suggesting functional differences, and clustered CINs differed from unclustered CINs in their intrinsic membrane properties. Finally, CINs expressing Lhx6, which defines a distinct γ-aminobutyric acid (GABA) coreleasing population, were notably absent from regions where highly clustered striosomal CINs appeared. Collectively, our findings uncover important dimensions of CIN organization, suggesting that modulation of regional and compartmental striatal output may depend upon the spatial-functional heterogeneity of CINs.
Human midbrain organoids reveal the characteristics of axonal mitochondria specific to dopaminergic neurons.
Mitochondrial dysfunction and abnormalities in mitochondrial quality control contribute to the development of neurodegenerative diseases. Parkinson's disease is a neurodegenerative disease that causes motor problems mainly due to the loss of dopaminergic neurons in the substantia nigra pars compacta. Axonal mitochondria in neurons reportedly differ in properties and morphologies from mitochondria in somata or dendrites. However, the function and morphology of axonal mitochondria in human dopaminergic neurons remain poorly understood. To define the function and morphology of axonal mitochondria in human dopaminergic neurons, we newly generated tyrosine hydroxylase (TH) reporter (TH-GFP) induced pluripotent stem cell (iPSC) lines from one control and one PRKN-mutant patient iPSC lines and differentiated these iPSC lines into dopaminergic neurons in two-dimensional monolayer cultures or three-dimensional midbrain organoids. Immunostainings with antibodies against axonal and dendritic markers showed that axons could be better distinguished from dendrites of dopaminergic neurons in the peripheral area of three-dimensional midbrain organoids than in two-dimensional monolayers. Live-cell imaging and correlative light-electron microscopy in peripheral areas of midbrain organoids derived from control TH-GFP iPSCs demonstrated that axonal mitochondria in dopaminergic neurons had lower membrane potential and were shorter in length than those in non-dopaminergic neurons. Although the mitochondrial membrane potential did not significantly differ between dopaminergic and non-dopaminergic neurons derived from PRKN-mutant patient lines, these differences tended to be similar to those in control lines. These results were also largely consistent with those of our previous study on somatic mitochondria. The findings of the present study indicate that midbrain organoids are an effective tool to distinguish axonal from dendritic mitochondria in dopaminergic neurons. This may facilitate the analysis of axonal mitochondria to provide further insights into the mechanisms of dopaminergic neuron degeneration in patients with Parkinson's disease.